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Figure Captions

1. Excitation energy versus the dimensionless parameter qr in units of the

Rydberg at several values of R .s

2. Structure factor versus kr at various values of R
O S

3. Structure factor versus kr 0 The solid and dashed lines correspond to twoo

and three dimensions for R i and 3.
s

4. Pair-correlation function g(r) versus r for various values of R . The
s

solid and dashed lines correspond to two arnd three dimensions.



Table 1. Ground-state energies obtained from various methods for the two- and

three-dimensional charged-boson system.

2D 3D
-E0 SCFA RDA 1 7  SCFA8 RDA19 VCA5

R s

1 1.2617 1.2918 0.7712 0.8030 0.7767

2 0.7808 0.8138 0.4472 0.4475 0.4516

3 0.5965 0.6210 0.3231 0.3523 0.3270

5 0.4245 0.4418 0.2129 0.2402 0.2159

10 0.2670 0.2783 0.1188 0.1428 0.1209

Table 2. Pressure of the 2D charged-boson system obtained from the SCFA and

RDA.

2D

-P/p: SCFA RDA

R
s

1 0.4060 0.4306

2 0.2557 0.2713

3 0.1961 0.2070

5 0.1404 0.1473

10 0.0911 0.0928
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and for the 3D charged-boson system the ground-state energy per particle is

evaluated by various methods:

E - 0.8030 R -3 4 (RDA)I9  (4.3)

0 s
E0 - - 0.8030 R "3 /4 + 0.027 , (VGA)5  (4.4)

5

E - - 0.8030 R "3/ 4 + 0.032 (SCFA)8  (4.5)
S

The extra numerical terms in Eqs. (4.2), (4.4) and (4.5) are due to the better

estimation of the correlation. The numerical data for the ground-state

energies in the various calculations are summarized in Table i, where we see

that the SCFA results are an improvement over the RDA results.

Differentiating Eq. (3.20) with respect to R, we obtain the pressure of

the 2D charged-boson system:

P R dE0
p 2 cdR (4.6)

The numerical results for the pressure are listed in Table 2 in comparison

with the RDA results.

In conclusion, we remark that the behaviors of the elementary excitation

spectrum, structure factor and pair-correlation functions obtained from the

SCFA, which includes the short range correlations for the 2D charged-boson

system, are very much like those of the 3D case. The SCFA results for the

ground-state energy are an improvement over the RDA results.
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factor increases more slowly than the 3D structure factor in the short-

wavelength region but more quickly in the long-wavelength region as qr is

varied.

With the use of the above calculations for the structure factor, we

evaluate the pair-correlation function from Eq. (3.13). The result is given

and compared with the 3D case in Fig. 4. The pair-correlation function starts

oscillating at large distances, which is not displayed in the figures. These

oscillations have very small and broad amplitudes. This long-distance

behavior is similar to the 3D case. For Bose fluids1 8 interacting via a soft

potential with a Lennard-Jones type tail and pseudopotential, in the RDA the

pair-distribution functions become negative at short distances and decrease as

-3
r at large distances. This decrease corresponds to the existence of a

phonon spectrum for small momenta. In the RDA the pair-distribution function

for the 2D charged boson becomes negative with decreasing R and diverges at rs

- 0. Consideration of the short-range correlation of the charged boson

through the local-field correction SCFA improves the result from the RDA,

i.e., the value of g(O) obtained in SCFA is negative, but so small that for

the practical purposes one can consider g(O) to be zero.

We have evaluated the ground-state energy by a numerical self-consistent

solution through Eqs. (3.14) and (3.19) to give

E - - 1.2918 R'2/3 + 0.03 (4.1)
0 5

In the RDA we have obtained the ground-state energy per particle in terms of

R as
s

- - 1.2918 R (4.2)



io

E- 2 / /3f1d dq [S(a,q) -i] (3.20)
0

We note that the 3D ground-state energy per particle in Rydbergs is given by

E . 3-1/4 R 3 4 J a dq [S(a,q) i] (3.21)7rs 0, F

4. Results and discussion

In the previous sections we have evaluated the elementary excitation

spectrum, pair-correlation functions and the ground-state energy of the

charged-boson system from the determination of the structure factor in the

self-consistent field approximation. Figure 1 illustrates the elementary

excitation spectrum as a function of qr for various values of R s. We see

that the third term in the bracket of Eq. (3.10) is dominant in the high-

momentum region, and thus the excitation energy is almost identical with that

of a free-particle. As R increases the excitation energy reduces mores

rapidly to the free particle case. We notice that in the low-momentum region

the 3D excitation energy obtained from the SCFA decreases as q increases, and

this reduction is quite significant with increasing R . This reduction doess

not appear in the 2D case for the range of densities 1 < R s < 10. A

comparison of Eqs. (3.6) and (3.12) shows that the result in the SCFA gives a

correction to Eq. (3.12) derived from the RDA.

In Fig. 2 we have given the numerical calculation of Eq. (3.14) as a

function of qr0 for various values of Rs by the iteration method. The

structure factor converges very rapidly to unity as Rs increases. We have

compared the 2D structure factor to the 3D case in Fig. 3. The 2D structure
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by the method of iteration. The 3D structure factor in the long-wavelength

approximation is given by

12 2 -

S(q) - (1 + 2 ( - 7q (3.16)
Rsq

with

2R3
. - f dq[S(q) - 1] (3.17)

Comparing Eqs. (3.9) and Eq. (3.17), we find that both forms are similar to

each other, with dependence of the spatial dimensionality on the dimensionless

parameter R

From the pair-correlation function or structure factor, we can calculate

the ground-state energy of the charged-boson system. We may write the

interaction energy as

Eint (a) - irNp dr O(r,a)[g(r) - 1r , (3.18)

or

Eit (a) - dq a(S(a,q) - 1] (3.19)

Expressing the wave number and the density in units of (2rpa2 k and Rs, we can0

write the ground-state energy per particle in Rydbergs Aq
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E(q) - (l+ 2m22 )  (3.12)

The short-range correlation functions occurring in the Coulomb

interaction between the charged bosons are expressed by the pair-correlation

function g(r), which represents the probability of finding two boson particles

separated by a distance r. The inverse Fourier transform of the structure

factor yields

g(r) - 1 + 2 J dq q J0 (qr)[S(q) - 1] , (3.13)

and from Eqs. (2.4), (2.7) and (3.6) the structure factor becomes

S(q) - (1 + 28 3 (1 - G(q)fl (3.14)

Rsq

with

R2

G(q) - __{J dk kE()[S(k) -1) + q fldk([l i 2( k

+ (r a)2 E(k))[S(k) - 1]1 , (3.15)
q q I

where r, q and'k are expressed in units of the Bohr radius a and a-
0 0

respectively, and K(x) and E(x) are the complete elliptic integrals of the

first and second kinds. The numerical solution of Eq. (3.14) can be obtained



S(q - k) - S(q) - qcosO Sk + a ( (3.7)

the local field correction G(q) becomes

G(q) - 7q (3.8)

and

R 
2

7 4 F d2q [S(q) 11 (3.9)

Then the excitation spectrum can be expressed as

E(q) - (LM(l - 2 q + 8m2 21 (.0

where Q - (2rpe 2q/m) 4 is the two-dimensional plasma frequency. In the case of

three-dimensions the excitation spectrum in the long-wavelength approximation

is given by

2 g4
E(q) q + 2 (3.11)

p

where w - (4trpe 2/m) is the 3D plasma frequency. We remark that one of theP

authors has obtained the excitation spectrum of the 2D charged-boson system

through the RDA in the long-wavelength approximation as17



where A - 8wp/a . The total induced charge Q is

Q - -e J d r 6p(r)

-zef d2q sin(ar) - ze (3.4)
G(q) _ s )n3 _

Equation (3.4) indicates that the charged impurity is completely screened at

long distances. However, the induced charge density [Eq. (3.3)] diverges at

r - 0. This divergence is due to the fact that the linearized equation of

motion for the classical one-particle distribution function is invalid near

the charged impurity. The divergence can be avoided by taking quantum effects

into consideration.

The elementary excitation spectrum E(q) is determined from the pole of

the density-density response function X(q,w), which yields

[c(q) + in] 2 2 (q) - 2pe(q)O(q) - 0 , (3.5)

and thus the excitation energy E(q) - Xw(q) can also be written as

E(q) - [() 2 + 2pe(q)O(q)] (3.6)

We notice that the elementary excitation spectrum in the ring-diagram

16 -1_
approximation (RDA) can be obtained under the condition O(q) - O(q), i.e.,

the neglection of the local corrections in Eq. (3.6). Making use of the

following expression for the structure in the long-wavelength approximation,
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We find the ground-state energy to be

2

E 0  dE E (a) (2.8)

where E int(a) is the interaction energy as a function of the coupling constant

a which is a measure of the strength of the coupling between bosons.

3. Excitation Spectrum, Structure Factor, Correlation Function and Ground-

State Energy

We first investigate the response of the charged-boson system to a

static impurity with charge ze located at the origin, where the external

potential is

2
4,2ze

ext (q,w) - q (W) (3.1)ext q

The induced charged density, which characterizes the linear response to an

external potential from a fixed charge, can be written as

Sp(q,w) - xq,w)e ext (q,w) (3.2)

Through the inverse Fourier transform of Eq. (3.2), we obtain the induced

charge density at position r as

-6 z Iosin(ar)
p(r) - dq a (3.3)

F q -_ ( 3 .
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In Eq. (2.2), X (qw) is the density-density response function for a
0

noninteracting charged-boson system at T - 0 given as

Xo(q,w) = 2pe(q)/[(w i?)2 (-)2] , (2.3)

2 2
where c(q) - J(q2/2m is the free par.ticle energy, t7 is a positive

infinitesimal quantity, and O(q) is the self-consistent effective potential,

e (q) - 2(q)j! - (q)] . (2.4)

2
Here, O(q) - 2re /q is the two-dimensional Fourier transform of the Coulomb

2
interaction e /r, and G(q) is given by

G(q) - P qk S(q-k) (27r) 2 (2.5)

In Eq. (2.5) the static structure factor S(q), which is the Fourier transform

of the pair-correlation function g(r), can be expressed as

S(k) - 1 + p f d2 r [g(r) - ie (2.6)

The singularities of the density-density response function represent the

energies of the excited states, and the excitation energy of the system is

related to S(q) through the Feynman expression

E(q) - t(q)/S(q) (2.7)



spectrum, structure factor, pair-correlation function and the GSE of 2D

charged-buson systems. Therefore, in this paper we evaluate the above

quantities of a 2D charged boson system, which consists of N identical bosons

with charge e and nass m, interacting via a Coulomb potential at T - 0 over

the range of densities 1 < R < 10. To calculate the above quantities we

adopt the SCFA given by Singwi et al. We survey the basic formula in Sec. 2,

and starting with the numerical self-consistent evaluation of the static

structure factor S(q), we obtain the elementary excitation spectrum,

correlation function and ground-state energy in Sec. 3. Finally, in Sec. 4 we

present our numerical results for the above quantities in comparison with

other works in terms of graphs and tables.

2. Basic Formulas

The self-consistent field approximation in the formalism of Singwi et al

includes the decoupling of the two-particle distribution function in the

Liouville equation into the product of two one-particle distribution functions

and a pair-correlation function,

f(r,p,r',p',t) - fl(r,plt) f (r',p'It) g(r - r') (2.1)

where r and p are the positioa and momentum of each particle and g(r)

represents the equilibrium static pair-correlation function. The density-

-+

density response function X(q,w) in Fourier space for an interacting system

becomes

X(q,w) - X (q,w)/[l - O(q)X (q,w)] (2.2)



1. Introduction

Since Foldy's pioneering work I on the charged-boson system, there has

been continuing interest in this system from the view point of real physical

systems. 2It should be pointed out that the special characteristic shared bv

the charged boson and electron gas is that the properties of the ground state

can be described by only a single dimensionless parameter Rs - r0/a0, where

r - (rp) is the mean particle distance, p is the number density, and a 00 0

S2/me2 is the Bohr radius of the particle with mass m. The electron gas has

been widely investigated for its applications to metals. H,',ever, the

charged-boson system has been largely ignored because of its nonexistence.

Concerning the ground-state energy (GSE), Foldy first calculated the

GSE and elementary excitation spectrum of the charged boson system in the high

density region (Rs < 1), which was also later evaluated by othors. In the

intermediate density region (I < R < 100), Lee, 4 Lee and Ree 5 and Monnier6

evaluated the GSE through the variational method with a Jastrow trial wave

function. More recently Hansen and Maxighi7 obtained a variational upper

bound to the GSE over a wide range of densities (1 < R < 200) with the use of

a variational Jastrow trial wave function, the hypernetted chain integral

equation, and the Monte Carlo method, and Hipolito et al8 investigated the

dielectric properties and also the two-dimensional (2D) and three-dimensional

(3D) classical electron systems by adopting the self-consistent field

approximation (SCFA) introduced by Singwi et al.
9

Although, in the past two decades, significant progress has been made in

the study of the 2D electron systems for the dielectric function, structure

10 Ii
factor and pair-correlation function, GSE and specific heat, effective

12131

mass, superlattice, 1 3 quantized Hall effect14 and other quantities, 1 5 there

is much less information about the properties of the elementary excitation
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The ground state of a two-dimensional charged-boson system is

investigated over the range of densities I < R < 10 in the self-consistent

field approximation; R- (a0rp) , where a is the Bohr radius and p is thes o o

number density. Starting with numerical self-consistent calculations of the

static structure factor, the elementary excitation, pair-correlation

functions, pressure and ground-state energy are evaluated. These results are

compared with those of the two-dimensional and three-dimensional systems

obtained from other methods. The ground-state energy is given as E0 -

-1.2918 R " 2 / 3 + 0.03, which improves the result from the ring-diagrams

approximation.

Accession For j

NTIS GRA&I

DTICTAB []

PACS Nos.: 67.40.Db, 05.30.Jp. U tiio tced.
JuStlrICOJlon

Distrlbutlon/

Availability Codes
- Av iand/or

Dist Special


